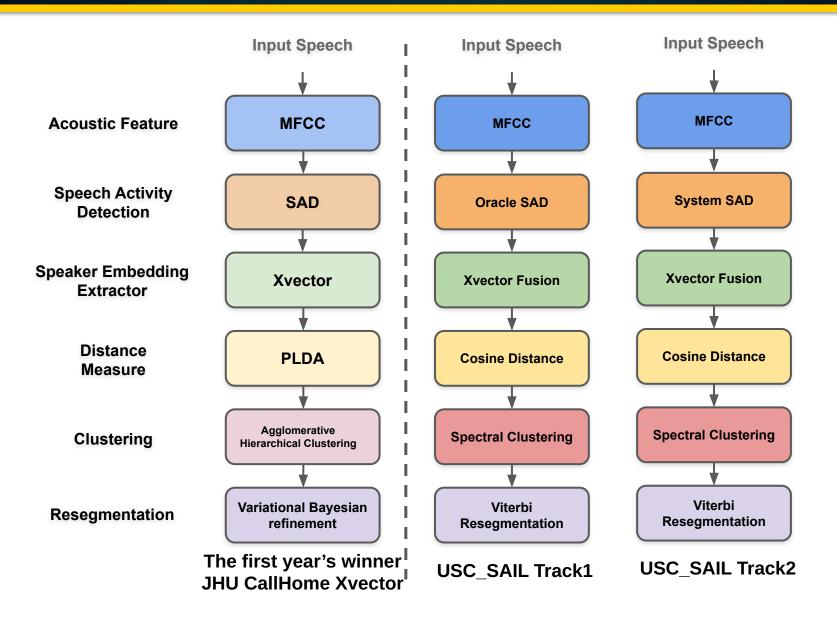
DIHARD 3 Diarization Challenge

USC SAIL Team

Taejin Park (Presenter) Raghuveer Peri, Arindam Jati, Shrikanth Narayanan

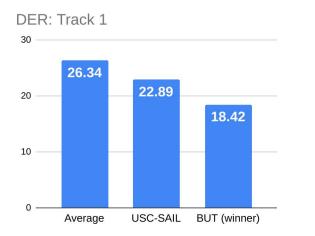
Who is USC_SAIL?

- University of Southern California (USC), Los Angeles
- Meing Hsieh Electrical Engineering Dept., Signal and Image Processing Institute (SIPI)
- Research Group Name: Signal Analysis and Interpretation Laboratory (SAIL)
- Supervision under Professor Shrikanth Narayanan
- SAIL focuses on human-centered signal & information processing
- Homepage: <u>https://sail.usc.edu/</u>
- Taejin Park (Presenter), Raghuveer Peri, Arindam Jati, Shrikanth Narayanan

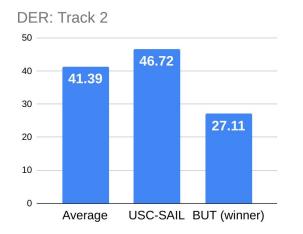


DIHARD2 Challenge 2019 Final results

9th place out of 23 teams for Track 1



12-th place for Track 2



Final results:

9-th place as a team for Track 1

12-th place as a team for Track 2

Discussion: Experimental Approaches

1. PLDA adaptation

- a. The performance of PLDA on dev-set data is not consistent with eval-set.
- b. Adapting PLDA to huge acoustic variability of DIHARD dataset is very challenging.

2. Embedding Denoising did not improve the performance

- a. Directly applied to the embedding level rather than acoustic signal.
- b. Low SNR embedding can hardly be denoised in embedding level.

3. Overlap Detection did not work for low SNR samples

- a. Competitive performance on high SNR utterances.
- b. Low SNR utterances heavily degrades the overlap detection performance.

Discussion: Techniques that improved the performance

1. Cosine Similarity + Spectral Clustering

- a. Cosine similarity is free from adaptation issues
- b. Spectral clustering shows better performance when coupled with cosine similarity.

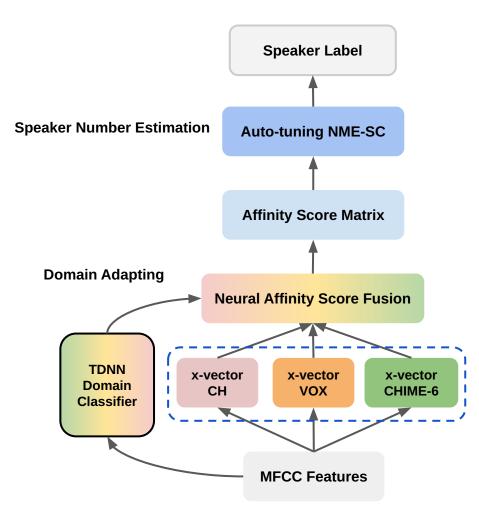
2. The Fusion of two embedding extractors

- a. Xvector trained on 8K CallHome + Xvector trained on 16K VoxCeleb
- b. The sum of cosine similarity compensates the poor performance obtained by single model.

3. Viterbi resegmentation

- a. Resegmentation can mitigate the effect of uniform length segmentation.
- b. Shows consistent improvement especially on system SAD (Track 2) setup

USC_SAIL 2020 DIHARD 3 System



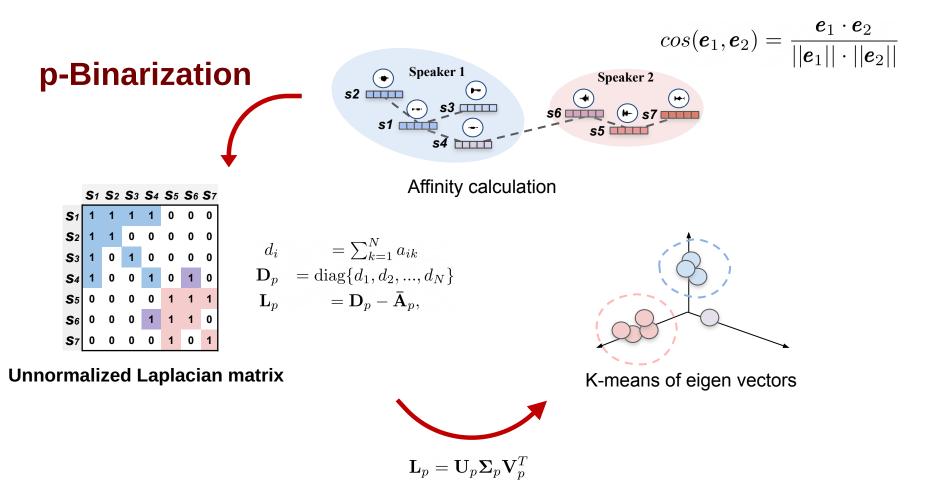
Auto-tuning Spectral Clustering

- No manual parameter tuning on dev-set
- Clustering parameter varies over session

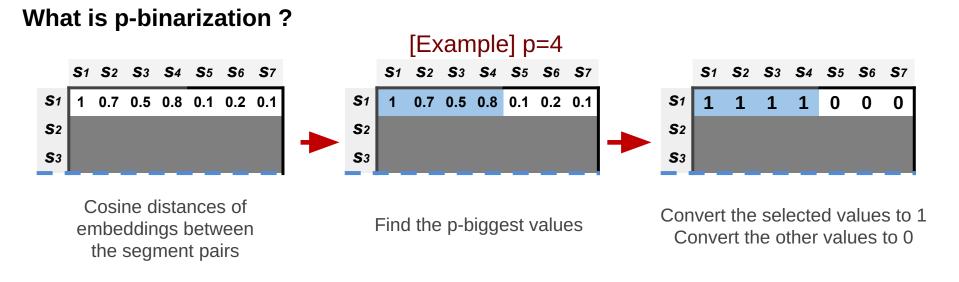
Domain Adaptive Affinity Fusion

- Soft decision on affinity weight selection
- Works better than hard decision method

Does not require (1) PLDA (training) (2) Development Set



[1] Taejin Park et. al. "Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap" IEEE SPL. 2019, p.381-385.



- p-binarization makes the affinity matrix focus only on the extremely prominent values
- BUT, without any proper strategy, p-value should be <u>optimized on a dev-set</u> (a p-value that gives the lowest DER is selected)

Is there any way we can determine p-value without dev-set?

[2] Taejin Park et. al. "Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap" IEEE SPL. 2019, p.381-385.

Eigengaps and Clusters: Number of speakers can be estimated by the **maximum eigengap**.

- Eigenvalues 10 5 8 0 2 4 6 10 6 4 2 0 0 2 6 8 10 4
- 0.08 0.06 0.04 0.02 0.08 0.06 0.04 0.02 6 9 10 3 5 8

Eigenvalues and eigengaps •

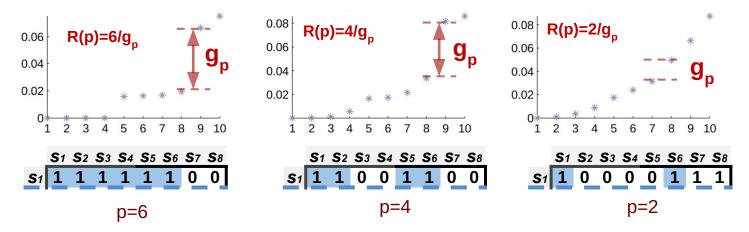
The Maximum Eigengap Cluster Clarity

Relationship between cluster clarity and eigen gap size

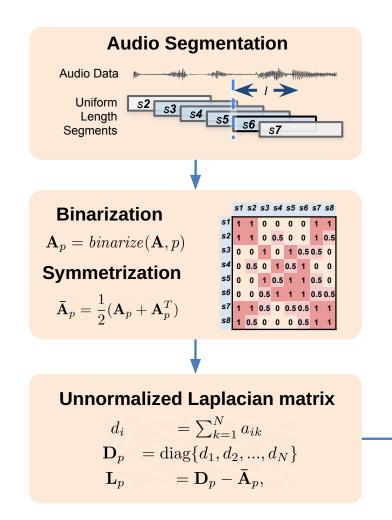
• Eigenvalues

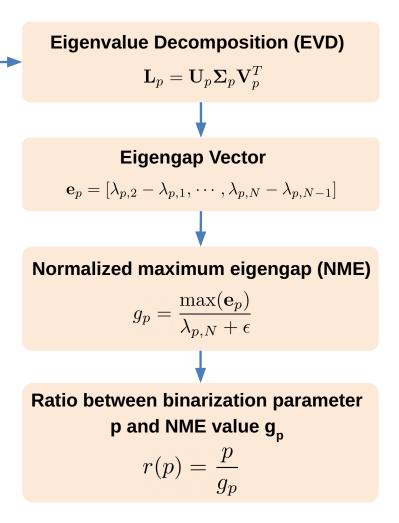
$$\begin{aligned} d_i &= \sum_{k=1}^N a_{ik} \\ \mathbf{D}_p &= \operatorname{diag}\{d_1, d_2, \dots, d_N\} & \longrightarrow & \mathbf{L}_p = \mathbf{U}_p \mathbf{\Sigma}_p \mathbf{V}_p^T & \longrightarrow & \mathbf{e}_p = [\lambda_{p,2} - \lambda_{p,1}, \cdots, \lambda_{p,N} - \lambda_{p,N-1}] \\ \mathbf{L}_p &= \mathbf{D}_p - \bar{\mathbf{A}}_p, \end{aligned}$$

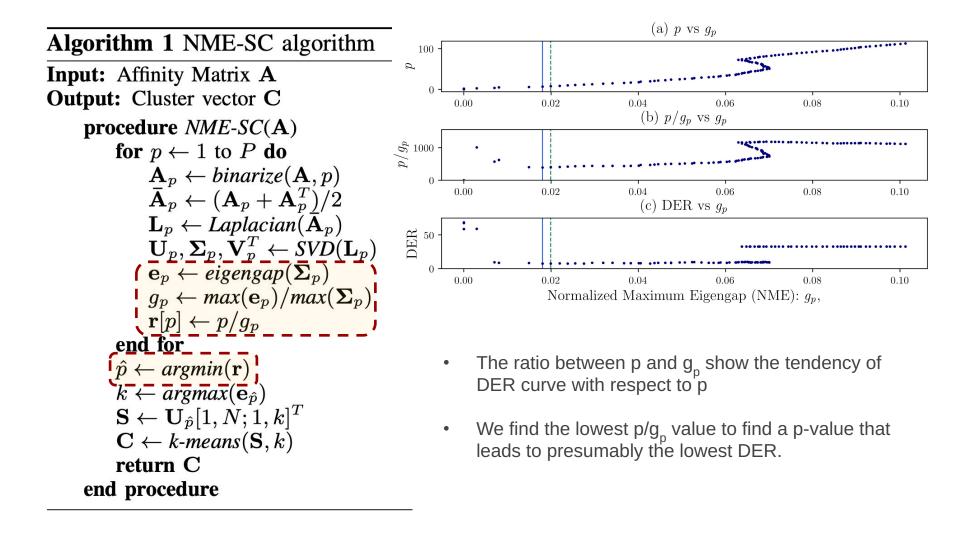
• Eigengaps of the same data but different p values

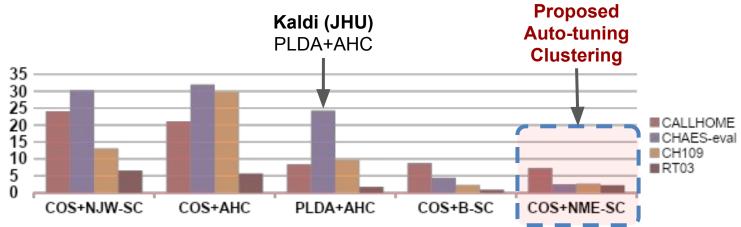


- As p gets bigger the maximum eigengap also increases.
- We focus on the ratio between p and the maximum eigengap size, r(p).
- But the relationship is not linear! \rightarrow r(p) is not constant









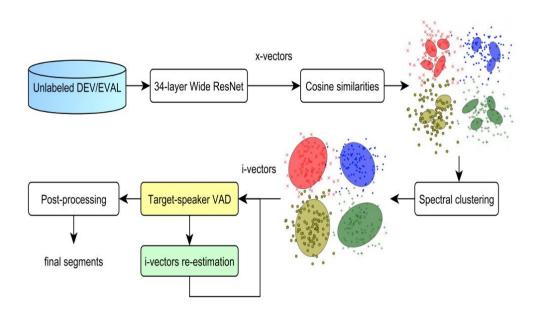
Downside

- Calculational complexity
- Hard to be performed in online fashion

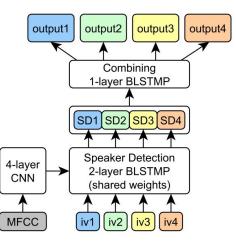
Benefits

- No training is needed for distance measure (No PLDA)
- No parameter tuning is needed.
- Speaker embedding from NN models can be directly used
- Superior performance by automatically find the parameter p for each independent session.
- Appeared in CHIME-6 track 2 Challenge winner's system

• Speech Activity Detector (SAD) or Voice Activity Detector (VAD) for track2



CHIME-6 Track 2 (Diar+ASR) Winner: STC system [1]

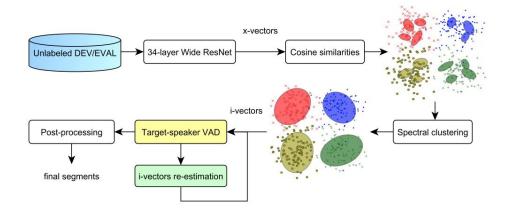


Target Speaker Voice Activity Detector (TS-VAD)

- ResNet inspired x-vectors
- Cosine Similarities with Auto-tuning Spectral Clustering method (NME-SC[2])
- Target-speaker VAD (TS-VAD) greatly improved the overall performance
 - \circ Uses i-vector input from parallel streams of speaker detection (SD) blocks
 - \circ $\,$ STC's TS-VAD shows that target-speaker VAD can be a solution for overlapping speech

https://chimechallenge.github.io/chime2020-workshop/papers/CHiME_2020_paper_medennikov.pdf
 Taejin Park et. al. "Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap" IEEE SPL. 2019, p.381-385.

NME-SC method in CHIME-6 Challenge Winner's system



	DI	EV	EV.	AL
	DER	JER	DER	JER
x-vectors + AHC	63.42	70.83	68.20	72.54
EEND + WRN x-vectors	52.20	57.42	56.01	61.49
WRN x-vectors + AHC	53.45	56.76	63.79	62.02
WRN x-vectors + SC	47.29	49.03	60.10	57.99
+ TS-VAD-1C (it1)	39.19	40.87	45.01	47.03
+ TS-VAD-1C (it2)	35.80	37.38	39.80	41.79
+ TS-VAD-MC	34.59	36.73	37.57	40.51
Fusion Fusion*	32.84 41.76	36.31 44.04	36.02 40.71	40.10 45.32

 Table 2: Diarization results (* stands for DIHARD II reference)

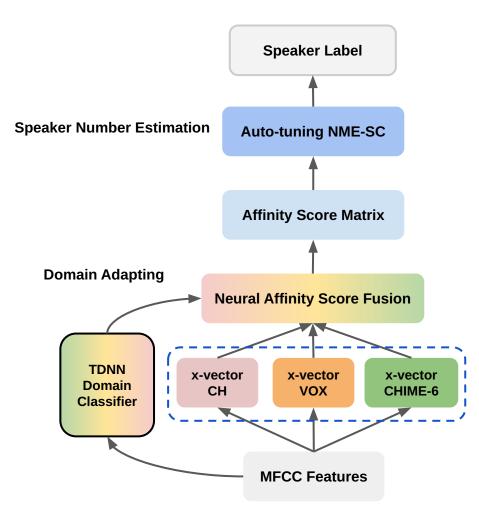
Medennikov, Ivan, et al. (Interspeech 2020)

NME-SC Challenge Winning Clustering Algorithm for Speaker Diarization

- Robust speaker clustering result provides a performance boost on Target-speaker VAD.
- In 2020 paper and CHIME-6 challenge, NME-SC showed constant improvement over AHC.

[1] https://chimechallenge.github.io/chime2020-workshop/papers/CHiME_2020_paper_medennikov.pdf
 [2] Taejin Park et. al. "Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap" IEEE SPL. 2019, p.381-385.

USC_SAIL 2020 DIHARD 3 System



Auto-tuning Spectral Clustering

- No manual parameter tuning on dev-set
- Clustering parameter varies over session

Domain Adaptive Affinity Fusion

- Soft decision on affinity weight selection
- Works better than hard decision method

Domain Adaptive Affinity Score Weighting

USC-SAIL Diarization System Performance

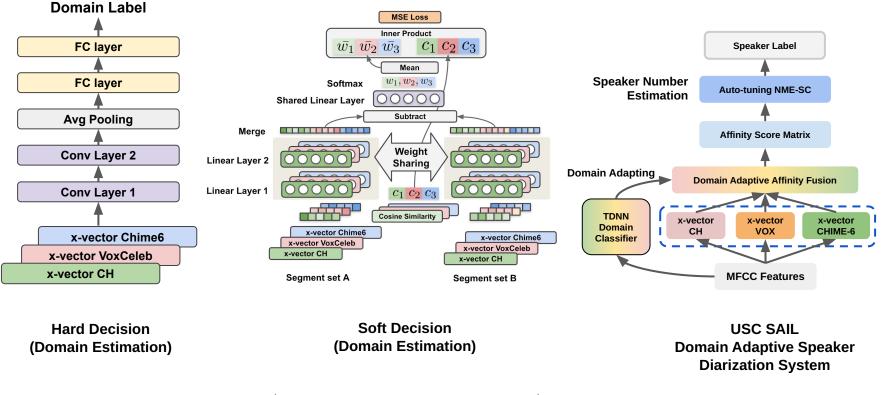
DER for each domair

	xvecCH	xvecVOX	xvecCHIME6
audiobooks	0.36	0.44	0
bc_interview	4.19	6.89	3.09
clinical	23.66	22.05	16.63
court	4.63	9.29	5.09
cts	15.05	19.57	19.13
maptask	6.6	5.94	6.64
meeting	31.44	31.79	28.3
restaurant	57.71	56.04	52.59
socio_field	16.06	15.33	13.78
socio_lab	8.45	10.36	9.61
webvideo	41.32	39.24	40.66

- x-vector CallHome: good on low-quality audio
 - Trained on SRE, SWBD (telephonic data)
 - DIHARD 1 Winner system
- x-vector Voxceleb: good on webvideo
 - Trained on interview videos on YouTube
 - VoxCeleb 1 and VoxCeleb 2
- **x-vector CHIME-6:** good on noisy environment
 - Trained on reverberated VoxCeleb data and CHIME-6 training data

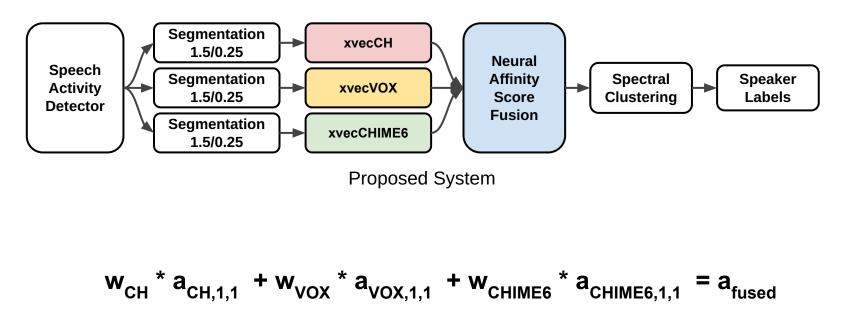
Domain Adaptive Affinity Score Weighting

Neural Affinity Score Fusion: Domain Adaptive Speaker Diarization



$$\mathbf{w} = \left(\frac{1}{N}\sum_{n=1}^{N} w_{1,n}, \frac{1}{N}\sum_{n=1}^{N} w_{2,n}, \frac{1}{N}\sum_{n=1}^{N} w_{3,n}\right)$$

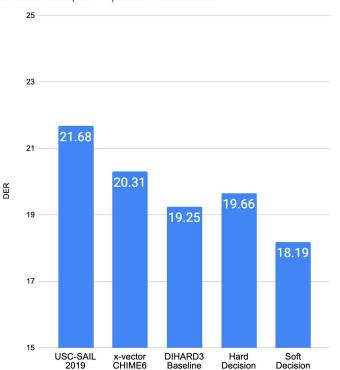
Domain Adaptive Affinity Score Weighting



Session level weighted sum of affinity matrix values

Domain Adaptive Affinity Score Weighting

Evaluation Results for DIHARD III Challenge: Track 1 Full DER (13th / 23 teams)



Domain Adaptive Speaker Diarization

- USC-SAIL 2019: DIHARD 2 system by USC-SAIL
- **X-vector CHIME6**: The best performing embedding extractor
- DIHARD3 Baseline
- **Hard Decision**: The domain of each session is estimated by the domain estimator
- **Soft Decision**: The weights among embedding extractors are determined by neural affinity score fusion network.
- Soft Decision CORE set DER: **19.76%**

Conclusion

- Auto-tuning clustering method showed improved performance over dev-set optimized binarized spectral clustering.
- Soft-decision method based on neural affinity fusion worked better than hard decision approach.
- The lack of overlap detection or source separation made the performance gap between the state-of-the-art system and our system.

